[Dataconomy] BigDataFr recommends: Understanding Dimensionality Reduction and its Applications

BigDataFr recommends: Understanding Dimensionality Reduction and its Applications

Dimensionality reduction as means of feature extraction

Feature extraction is a very broad and essential area of data science. It’s goal is to take out salient and informative features from input data, so that they can be used further in predictive algorithms. Modern data scientists observe large amounts of data, which is hard to process at once: data can be raw, unstructured, high dimensional, or noisy. Thus, extracting salient features is vital for successful applications of machine learning algorithms. Feature extraction is a widely discussed research topic.

Read more
By Dmitry Storcheus
Source: dataconomy.com

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *